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Modal expansion of the perturbation velocity potential for a
cantilevered fluid-conveying cylindrical shell
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Abstract

The subject of this paper is the application of the method of separation of variables and the Galerkin method for

discretization of the equations of motion for a cantilevered cylindrical fluid-conveying shell. The perturbation velocity

potential is expressed in terms of a series of orthonormal beam modal functions. The final Galerkin generalized fluid

force coefficients are simple, compact, and easy to evaluate numerically. To validate the method, comparisons with

results obtained from the Fourier transform method are made. Mismatch between the actual axial fluid modes and the

assumed modes affects the Galerkin coefficients to some extent, but the unstable eigenvalue branch is only affected

slightly over a wide range of system parameters, and critical flow speeds predicted by the two methods generally agree

well.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fluid-conveying cylindrical shells are found in numerous industrial applications, in particular in connection with

power generation (Au-Yang, 1985; Au-Yang, 2001). There are also numerous physiological applications, e.g., in

connection with respiratory systems and blood flow (Pedley and Luo, 1998). The dynamics of fluid-conveying shells

have thus been studied rather extensively. In practical applications, clamped–clamped boundary conditions are

probably the most common. But cantilevered (clamped–free) shells are also found. For example, Fujita et al. (1991)

mention a cantilever-type ‘intermediate’ heat exchanger in the reactor vessel of a fast breeder reactor. No direct support

is added at one end because of large thermal expansion. But the main interest in cantilevered shells is probably as a

model problem to study flow-induced dynamic instabilities due to the non-conservative character of the fluid forces

(Pa.ıdoussis, 1987; Pa.ıdoussis and Li, 1993).

Analyses of complicated systems are commonly being based on the finite element method (Zienkiewicz and Taylor,

1991; Selmane and Lakis, 1997). In contrast, fundamental studies of simpler systems are often based on ‘semi-

analytical’ discretization methods, such as power-series expansion (Niordson, 1953; Pa.ıdoussis and Denise, 1972), or the

Galerkin method (Shayo and Ellen, 1978; Pa.ıdoussis, 1987) Four boundary conditions are specified at each end and

accordingly, a power-series expansion is limited to eight wavenumbers. The Galerkin method is not subject to this

restriction and may therefore give more accurate solutions.

Through the fundamental studies referred to up to this point, potential flow theory has proved to be adequate in

yielding correct stability characteristics. The variables in the perturbation velocity potential F; expressed with respect to
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Nomenclature

a internal radius of the shell

Aj linear combination factors for the modal expansion of the axial deflection, see Eq. (17)

A mass matrix defined by Eq. (59)

bms coefficient defined by Eq. (38)

Bj linear combination factors for the modal expansion of the circumferential deflection, see Eq. (17)

B fluid damping (Coriolis) matrix defined by Eq. (59)

cms coefficient defined by Eq. (33)

c eigenvector for beam-mode oscillations, see Eq. (58)

Cj linear combination factors for the modal expansion of the radial deflection, see Eq. (17)

C generalized stiffness matrix defined by Eq. (59)

dms coefficient defined by Eq. (33)

d eigenvector for shell-mode oscillations, see Eq. (44)

Dj linear combination factors for the perturbation velocity potential, see Eq. (25)

Ej linear combination factors for the perturbation velocity potential, see Eq. (25)

fj beam expansion function (mode j)

Fu;v;w differential operators for the shell equations

F complex system matrix defined by Eq. (45)

gj outflow function for the Fourier transform method, see Eq. (54)

Hj linear combination factors for the perturbation velocity potential

i
ffiffiffiffiffiffiffi
�1

p
In modified Bessel function of first kind and of order n

I unit matrix

In a real, symmetric function defined by Eq. (53)

Imn a real, symmetric function defined by Eq. (40)

k wavenumber (continuous)

km the mth (discrete) wavenumber

Kn modified Bessel function of second kind and of order n

K stiffness matrix for beam-mode oscillations, see Eq. (58)

L length of the shell

QðjÞ
msn Galerkin fluid load coefficients defined by Eq. (49)

Q
ðj * Þ
msn Fourier–Galerkin fluid load coefficients defined by Eq. (52)

QðjÞ matrix with elements QðjÞ
msn or Q

ðj * Þ
msn

r radius

Rm radial expansion of perturbation velocity potential, given by Eq. (25)

t time

T time function, defined by Eq. (21)

u axial deflection of the shell

U undisturbed axial flow velocity

v circumferential deflection of the shell

Vx axial flow velocity by disturbed motion

Vy circumferential flow velocity by disturbed motion

Vr radial flow velocity by disturbed motion

w radial deflection of the shell

x axial distance along the shell

Xm axial expansion of perturbation velocity potential, defined by Eq. (30)

b fluid mass parameter, defined by Eq. (57)

Gmj outflow function for the Fourier transform method, see Eq. (54)

dms the Kronecker delta

D the Laplacian operator, defined by Eq. (10)

y circumferential coordinate

Yn part of the velocity potential which is a function of y only

kj eigenvalues corresponding to the beam expansion functions
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cylindrical polar coordinates ðx; y; rÞ; can be separated by assuming solutions of the form

F ¼ Fðx; y; r; tÞ ¼ RðrÞX ðxÞYðyÞTðtÞ; ð1Þ

where RðrÞ; X ðxÞ; YðyÞ; and TðtÞ are functions of one variable only, and t is the time. The potential function F must

satisfy the Laplace equation

DF ¼ 0; ð2Þ

where D is the Laplacian. By virtue of the solution assumption (1) and simple assumptions regarding YðyÞ and TðtÞ; the
partial differential equation (2) is split up into two ordinary differential equations, a modified Bessel equation in RðrÞ
(also including the circumferential mode number n) and a one-dimensional wave equation in X ðxÞ;

X 00ðxÞ þ k2X ðxÞ ¼ 0; ð3Þ

where k is a discrete wavenumber and a prime means differentiation with respect to the argument. By the power-series

expansion method, the assumption X ðxÞ ¼ C expðikxÞ is applied, C being a constant, and each term satisfies (3) for all

possible sets of boundary conditions.

Modal expansion of X ðxÞ and the structural deflections is straightforward in the pinned–pinned case and works well

in connection with the Galerkin method, as the fluid and structural modes are orthogonal, see, e.g., Chen (1972). The

situation is more complicated when clamped ends are involved. In such cases the potential has previously been

discretized by application of Fourier transform (Shayo and Ellen, 1978; Pa.ıdoussis et al., 1986). A less restrictive

variable separation is then used in the Laplace equation, namely

Fðx; y; r; tÞ ¼ Rðr; xÞYðyÞTðtÞ ð4Þ

and the r and x variables are separated in the Fourier domain by applying the Fourier transform couple

Rnðr; kÞ ¼
Z

N

�N

Rðr; xÞeikx dx; Rðr; xÞ ¼
1

2p

Z
N

�N

Rnðr; kÞe�ikx dk; ð5Þ

where k here is a continuously varying wavenumber.

Dowell and Widnall (1966a) and Widnall and Dowell (1967) introduced the use of Fourier transform to calculate the

generalized aerodynamic forces on oscillating cylindrical shells. External flow was considered in Dowell and Widnall

(1966a) and internal flow in Widnall and Dowell (1967). [Fourier transform is needed for subsonic flow, while both

Laplace and Fourier transforms work for supersonic flow. See also Dowell and Widnall (1966b) for the supersonic

case.] The Fourier transform was also applied by Shayo and Ellen (1974) in a study of the stability of simply supported

shells containing a flowing fluid, and by Au-Yang (1977) and Pa.ıdoussis et al (1984) in connection with fluid-containing

and fluid-conveying coaxial shells.

A drawback of the Fourier transform approach is that the integrals most often only can be evaluated numerically.

And for the case of a cantilevered shell, a model of the jet issuing from the free end also needs to be included.

This is because the Fourier transform basically expands each structural modal function fm into fluid modal

functions, whereby the fulfillment of the natural boundary conditions @2fm=@x2 ¼ 0 and @3fm=@x3 ¼ 0 at the free end is

lost.

The primary goal of the present paper is to derive simple, approximate expressions for the generalized fluid forces,

based on a Galerkin discretization of the coupled fluid–structure problem where both the structural deflections and the

fluid perturbation pressure are expanded in the same set of orthonormal beam modal functions. The problem is posed

as a boundary value problem. To carry this through, it will be accepted that Eq. (3) is not satisfied exactly, but only

approximately, in the averaged, ‘weak’ form of the Galerkin method. This is because the fulfillment of the (structural)

natural boundary conditions at the free end is given higher priority than satisfying the Laplace equation (2) exactly. A

downstream jet model is unnecessary, as the behavior of the jet is related to the structure through the fluid boundary

conditions.

l complex eigenvalues of the system matrix Eq. (60)

m mass parameter, defined by Eq. (48)

r density of the fluid

F perturbation velocity potential, given by Eq. (39)

C velocity potential, defined by Eq. (8)

o frequency
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The work is divided into seven sections. Section 2 outlines the governing equations and boundary conditions for the

shell and the fluid. In Section 3, equations are derived for the perturbation velocity potential and the perturbation

pressure acting on the wall of the shell. In Section 4, the Galerkin generalized fluid force coefficients are given. Section 5

gives the Galerkin coefficients based on the Fourier transform method and outlines the numerical evaluation. In Section

6 comparisons of Galerkin coefficients and beam mode critical flow speed predictions are made. Finally, some

concluding remarks are made in Section 7.

The paper also includes two appendices. In Appendix A, the beam modal expansion functions are listed. Appendix B

is concerned with a specific mathematical detail.

2. Equations of motion and boundary conditions

Let U be the uniform entrance velocity of an incompressible inviscid fluid of density r; flowing steadily in the axial

direction within a flexible cylindrical shell of radius a: The fluid is entering at x ¼ 0 and discharging at x ¼ L: Small

vibrations of the shell around its equilibrium position is described by a set of three coupled partial differential

equations, written symbolically here as

Fuðu; v;wÞ ¼ 0; Fvðu; v;wÞ ¼ 0; Fwðu; v;wÞ ¼ 0; ð6Þ

where the deflections ðu; v;wÞ are given with respect to cylindrical polar coordinates ðx; y; rÞ: The full equations will not
be considered here, but can be found in e.g., Pa.ıdoussis and Denise (1972) and Shayo and Ellen (1978). The boundary

conditions for the cantilevered shell are

u ¼ v ¼ w ¼ 0 and @w=@x ¼ 0 at x ¼ 0;

Normal force

Bending moment

Effective shear force

Effective membrane shear force

9>>>=
>>>;

¼ 0 at x ¼ L: ð7Þ

For mathematical expressions for the conditions at x ¼ L; see again Pa.ıdoussis and Denise (1972) and Shayo and Ellen

(1978).

The velocity potential for the fluid is defined as

C ¼ Ux þ F; ð8Þ

where F is a perturbation velocity potential. The fluid velocities in a disturbed state are given by

Vx ¼
@C
@x

¼ U þ
@F
@x

; Vy ¼
1

r

@C
@y

¼
1

r

@F
@y

;Vr ¼
@C
@r

¼
@F
@r

: ð9Þ

The perturbation potential F must satisfy the Laplace equation

1

r

@

@r
r
@F
@r

� 	
þ

1

r2
@2F

@y2
þ
@2F
@x2

¼ 0: ð10Þ

Knowing the potential, the perturbation pressure on the pipe wall is evaluated from the linearized Bernoulli equation as

p ¼ �r
@F
@t

þ U
@F
@x

� 	
at r ¼ a: ð11Þ

The kinematic boundary condition, to be satisfied on the pipe wall, is

@F
@r

¼
@w

@t
þ U

@w

@x
at r ¼ a: ð12Þ

The inflow boundary condition for the fluid is specified as follows:

Vx ¼ U at x ¼ 0; i:e:;
@F
@x

¼ 0 at x ¼ 0: ð13Þ

The perturbation pressure p vanishes at the free end. Eq. (11) then gives the outflow boundary condition

@F
@x

¼ �
1

U

@F
@t

¼ �i
o
U
F at x ¼ L; ð14Þ
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assuming a time dependence expðiotÞ: It will be assumed in the present paper that jFo=U j{jU j at x ¼ L; by which the

non-dimensional perturbation velocity jU�1@F=@xj{1: Then, based on the approximation U�1@F=@xE0 at x ¼ L;
Eq. (14) is simplified to

@F
@x

¼ 0 at x ¼ L: ð15Þ

Finally, the potential must also satisfy the singularity condition

FoN at r ¼ 0: ð16Þ

3. Separation of variables

3.1. Deflections

As in Shayo and Ellen (1978), the deflections ðu; v;wÞ are expanded as

u

v

w

8><
>:

9>=
>; ¼ expðiotÞ

XN
m¼1

Am cosðnyÞa@fmðxÞ=@x

Bm sinðnyÞfmðxÞ

Cm cosðnyÞfmðxÞ

8><
>:

9>=
>;; ð17Þ

where Am; Bm and Cm are constants (linear combination factors). The expansion functions fmðxÞ are the eigenfunctions
for a vibrating beam, given by

fmðxÞ ¼ zð1Þm sinðkmxÞ þ zð2Þm cosðkmxÞ þ zð3Þm sinhðkmxÞ þ zð4Þm coshðkmxÞ: ð18Þ

The eigenvalues km and the constants zðjÞm are determined by the boundary conditions. Numerical values for the

clamped–free case are given in Appendix A. The beam functions are normalized such that

1

L

Z L

0

fm fj dx ¼ dmj ¼
1 for m ¼ j;

0 for maj:

(
ð19Þ

3.2. Velocity potential

The potential Fn; corresponding to the nth circumferential mode, is assumed to have the form

Fn ¼
XN
m¼1

Fmn; Fmnðx; y; r; tÞ ¼ RmðrÞXmðxÞYnðyÞTðtÞ; ð20Þ

with

YnðyÞ ¼ cosðnyÞ; TðtÞ ¼ expðiotÞ: ð21Þ

Inserting Eqs. (20) and (21) into (10) givesXN
m¼1

@2Rm

@r2
Xm þ

1

r

@Rm

@r
Xm �

n2

r2
RmXm þ Rm

@2Xm

@x2

� �
¼ 0; ð22Þ

which can be separated into the following equations (Courant and Hilbert, 1953, Chapter V):

@2Rm

@r2
þ
1

r

@Rm

@r
�

n2

r2
þ k2

m

� 	
Rm ¼ 0; ð23Þ

@2Xm

@x2
þ k2

mXmðxÞ ¼ 0; m ¼ 1; 2;y;N; ð24Þ

where km is the mth eigenvalue.

The general solution to the modified Bessel equation (23) is

RmðrÞ ¼ DmInðkmrÞ þ EmKnðkmrÞ ð25Þ

where Dm and Em are constants, and In and Kn are modified Bessel functions of first and second kind, respectively, and

of order n: But in order to satisfy Eq. (16), Em � 0:
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The general solution to the wave equation (24) is given by

XmðxÞ ¼ Am sinðkmxÞ þBm cosðkmxÞ; ð26Þ

and by imposing the boundary conditions (13) and (15), which in terms of Xm take the form

@Xm

@x
¼ 0 for x ¼ 0 and L; ð27Þ

the eigensolutions are determined as

XmðxÞ ¼ Bm cosðkmxÞ; kmL ¼ mp: ð28Þ

The eigenfunctions can be expanded in the orthonormal beam functions fmðxÞ as

cosðkmxÞ ¼
XN
j¼1

HmjfjðxÞ; Hmj ¼
1

L

Z L

0

cosðkmxÞfjðxÞ dx: ð29Þ

It may be expected that a good number of terms will be needed to yield convergent results, as the expansion functions

fjðxÞ do not satisfy the boundary conditions (27). In the present paper, rather than using Eq. (29), the XmðxÞ functions
are taken, at the outset, as

Hm fmðxÞ; ð30Þ

where Hm are constants, and eigenvalues km are obtained from the Galerkin equationsXN
m¼1

Hm

Z L

0

ff 00
m fj þ k2

mfm fjg dx ¼ 0; j ¼ 1; 2;y; ð31Þ

which is obtained as the weak form of Eq. (24) with Eq. (30) inserted. (A prime indicates differentiation with respect to

the argument x:) When imposing the boundary conditions (27), (31) takes the formXN
m¼1

Hm

Z L

0

f 0
m f 0

j � k2
mfm fj

n o
dx ¼ 0; j ¼ 1; 2;y: ð32Þ

By using Eq. (19) and the notation

cmj ¼
1

L

Z L

0

f 00
m fj dx; dmj ¼

1

L

Z L

0

f 0
m f 0

j dx ¼
1

L
½f 0

m fj �x¼L � cmj ; ð33Þ

Eq. (32) can be written as

d11 � k2
1 d12 d13 ?

d21 d22 � k2
2 d23 ?

d31 d32 d33 � k2
3 ?

^ ^ ^ &

2
6664

3
7775

H1

H2

H2

^

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

^

8>>><
>>>:

9>>>=
>>>;
: ð34Þ

The wavenumbers km are thus determined as the square root of the eigenvalues of the matrix with elements dmj : As this

matrix is symmetric and positive definite, all eigenvalues are positive. Eq. (34) is basically the Rayleigh–Ritz method by

Kamke’s quotient (rather than Rayleigh’s quotient) as the boundary conditions (27) are not satisfied by the expansion

functions fmðxÞ; but incorporated through integration by parts (Kamke, 1967, Chapter B, Section 1). Pa.ıdoussis and

Issid (1974) and Pa.ıdoussis (1998) give analytical expressions for the coefficients cmj : For completeness, these

expressions are also included in Appendix A.

Writing the velocity potential as

Fn ¼
XN
m¼1

DmInðkmrÞfmðxÞ cosðnyÞeiot; ð35Þ

the boundary condition (12) gives

@

@r

XN
j¼1

DjInðkjrÞfjðxÞ

( )
r¼a

¼
XN
j¼1

Cj iofjðxÞ þ Uf 0
j ðxÞ

n o
: ð36Þ

By multiplying both sides by fmðxÞ and integrating from 0 to L; the constants Dm are obtained as

Dm ¼
ioCm þ U

P
j bjmCj

kmI
0
nðkmaÞ

; ð37Þ
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where a prime indicates differentiation with respect to the argument. To obtain Eq. (37), it has been used that

f 0
mðxÞ ¼

XN
j¼1

bmjfjðxÞ; bmj ¼
1

L

Z L

0

f 0
m fj dx: ð38Þ

The final expression for the velocity potential is

Fn ¼ aeiot cosðnyÞ
XN
m¼1

Cm ioImnfm þ U
XN
j¼1

bmjfjIjn

( )" #
; ð39Þ

where

Imn ¼
InðkmaÞ

kmaI0nðkmaÞ
: ð40Þ

Using Eq. (11) with Eq. (39) inserted, the pressure on the pipe wall can be expressed as

pn ¼
XN
m¼1

pmn ¼ � raeiot cosðnyÞ
XN
m¼1

Cm �o2Imnfm

"

þ ioU Imnf 0
m þ

XN
j¼1

bmjfjIjn

( )
þ U2

XN
j¼1

bmjf
0

j Ijn

#
: ð41Þ

It may be noted that I0nðzÞ ¼ Inþ1ðzÞ þ InðzÞ n=z and, by using the power series for In and Inþ1; that

Imn ¼
1

n
1�

a2k2
m

2nðn þ 1Þ
þ Oða4k4

mÞ
� �

: ð42Þ

This is a real, even function in akm; as may be seen also from Fig. 1, which shows the ‘full’ function, as given by Eq. (40).

4. Discretization of the shell equations

The discretization follows the standard Galerkin approach. The residual equations areZ 2p

0

Z L

0

fs cosðnyÞ Fu Fv Fwf gT dx dy ¼ 0 0 0f gT ;

s ¼ 1; 2;y;N: ð43Þ

Fig. 1. The function ImnðkmaÞ defined by Eq. (40). [It is equivalent to InðkaÞ defined by Eq. (53), but Eq. (40) is defined for discrete

km-values, while Eq. (53) is for continuously varying k:]
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The eigenmode expansions (17) for u; v w are now inserted into the differential equations (6). Truncating the infinite

series after S terms (m; s ¼ 1; 2;y;S) leads to a linear equation system of the form

Fd ¼ 0: ð44Þ

Here d = fA1;y;AS ;B1;y;BS ;C1;y;CSg
T is the vector of linear combinations factors, and F is a 3S  3S complex

matrix which has the form

F ¼ �o2F2 þ 2ioUF1 þ U2F0: ð45Þ

The generalized fluid force coefficients entering in this equation system take the form

Cm eiotQmsn ¼ �
Z 2p

0

Z L

0

cosðnyÞpmnfs dx dy ¼ Cme
iot

Z 2p

0

cos2ðnyÞ dyra


Z L

0

�o2Imnfm fs þ ioU
XN
j¼1

bmjIjnfjfs þImnf 0
m fs

( )
þ U2

XN
j¼1

bmjIjnf 0
j fs

" #
dx: ð46Þ

To conform with Eq. (45) the factors Qmsn are split into three parts, such that

Qmsn ¼ �o2mQð1Þ
msn þ 2ioUmQð2Þ

msn þ U2mQð3Þ
msn; ð47Þ

where

m ¼ rpa2= %a ð48Þ

and

Qð1Þ
msn ¼Imndms; Qð2Þ

msn ¼ 1
2
ðImn þIsnÞbms;

Qð3Þ
msn ¼

X
j

Ijnbmjbjs: ð49Þ

The three terms QðjÞ
msn; j ¼ 1; 2; 3; in Eq. (49) correspond to: (1) added mass; (2) fluid damping; and (3) follower-type

centrifugal force, respectively.

Nondimensional ‘overbarred’ quantities are defined as

%km ¼ Lkm; %x ¼ x=L; %a ¼ a=L: ð50Þ

By using Eq. (42) it is immediately seen that if %km ¼ Oð1Þ; %a{1; and na0 (not ‘breathing mode’ oscillations) then

ImnE1=n and Eq. (49) reduces to the ‘plug flow result’ (Dowell and Widnall, 1966a; Pa.ıdoussis et al., 1986)

Qð1Þ
msn ¼ dms=n; Qð2Þ

msn ¼ bms=n; Qð3Þ
msn ¼ cms=n: ð51Þ

The result
P

j bmjbjs ¼ cms is shown in Appendix B. It should also be noted that the coefficients QðjÞ
msn; j ¼ 1; 2; 3; of

Eq. (49) have the same symmetry properties as the plug flow coefficients of Eq. (51). The term Qð3Þ
msn is rapidly

converging in any of the numerical cases considered (see Section 6). An example of convergence history, for m ¼ s ¼ 4;
n ¼ 1; and %a ¼ 0:25; is shown in Fig. 2.

5. The Fourier transform method

To validate the main results Eq. (49), they will be compared with those obtained by the Fourier transform method.

Following Shayo and Ellen (1978); Pa.ıdoussis et al. (1986) and Pa.ıdoussis (1998), the Fourier representation of QðjÞ
msn;

j ¼ 1; 2; 3; is given by

Fig. 2. Convergence of the term Qð3Þ
msn ¼

P
j Ijnbmjbjs; Eq. (49). The case shown is for m ¼ s ¼ 4; n ¼ 1; and a=L ¼ 0:25:
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Q
ð1* Þ
msn ¼

1

2p

Z
N

�N

In

Z 1

0

fme
i %k %x d %x þ

Z
N

1

gme
i %k %x d %x

� � Z 1

0

fse
�i %k %x d %x

� �
d %k;

Q
ð2* Þ
msn ¼ �

i

2p

Z
N

�N

%kIn

Z 1

0

fme
i %k %x d %x þ

Z
N

1

gme
i %k %x d %x

� � Z 1

0

fse
�i %k %x d %x

� �
d %k;

Q
ð3* Þ
msn ¼ �

1

2p

Z
N

�N

%k2In

Z 1

0

fme
i %k %x d %x þ

Z
N

1

gme
i %k %x d %x

� � Z 1

0

fse
�i %k %x d %x

� �
d %k; ð52Þ

where gmð %xÞ is a so-called ‘outflow model’, and

In ¼
InðkaÞ

kaI0nðkaÞ
: ð53Þ

One possible outflow model function gmð %xÞ is given by Nguyen et al. (1993) as

gmð %xÞ ¼ ðGm1 %x þ Gm2Þe1� %x; Gm1 ¼ ½fm þ f 0
m� %x¼1;Gm2 ¼ �½f 0

m� %x¼1: ð54Þ

This model has the properties

ðiÞ ½gmð %xÞ� %x¼1 ¼ ½fmð %xÞ� %x¼1; ðiiÞ ½g0mð %xÞ� %x¼1 ¼ ½f 0
mð %xÞ� %x¼1;

ðiiiÞ ½gmð %xÞ� %x-N
¼ 0; ðivÞ ½g0mð %xÞ� %x-N

¼ 0; ð55Þ

and the terms Q
ðj * Þ
msn ; j ¼ 1; 2; 3; converge. The integral of the outflow model function is evaluated asZ

N

1

gme
i %k %x d %x ¼

ei
%k

ð�1þ i %kÞ2
f2Gm1 þ Gm2 � i %kðGm1 þ Gm2Þg: ð56Þ

The other two ‘inner’ integrals are also evaluated analytically, but the resulting expressions are too long to be of

interest. The ‘outer’ integration, running over �No %koN; is performed numerically. The infinite interval of

integration is replaced by a finite one, sufficiently large to ensure convergence of the resulting coefficients (52). The finite

interval is divided into a number of sub-intervals wherein the integrations are performed by using a 10-point Gauss–

Legendre method (Press et al. 1992). In all numerical results presented in the following, the range �1000o %ko1000 split

up into 1000 subintervals was used.

6. Comparison of numerical results by the two methods

6.1. Galerkin generalized fluid load coefficients

To examine the agreement between the modal expansion (ME) method and the Fourier transform (FT) method, the

Galerkin generalized fluid force coefficients QðjÞ
msn and Q

ðj * Þ
msn will be compared for several values of the modal numbers m

and s: The results have been checked for several values of the circumferential wavenumber n; but only those for n ¼ 1

will be displayed here, as the results are qualitatively similar for other values of n:
The results are shown in Fig. 3. The solid curves give the results of the present ME method, while the results of the FT

method are given by & for the added mass coefficients, by r for the fluid damping coefficients, and by J for the

centrifugal force coefficients. Parts (a)–(d) show the first four diagonal elements ðm; sÞ ¼ ð1; 1Þ;y; ð4; 4Þ: It is noticed
that the agreement between the centrifugal force coefficients is very poor for ðm; sÞ ¼ ð1; 1Þ and that the agreement is

getting better and better for increasing modal number. This is because the first modal function f1ðxÞ is far from being

able to resemble the true eigenfunction (28) to the wave equation (24), but the mismatch becomes less severe with

increasing modal number, as the modal functions become more and more ‘sinuous’.

The off-diagonal terms, shown in parts (e)–(h), generally agree reasonably well. But in any case the ME method

predicts an increase in the absolute value of the centrifugal force coefficients when the slenderness ratio %a is increased

from zero to a moderate value (approximately between 0.1 and 0.2) and then a decrease by further increase of %a: This is
not a general trend by the FT method, and the cases where these terms have continuously decreasing absolute values are

where the largest discrepancies between the results of the two methods are found.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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6.2. Beam mode flutter calculations

In order to check the influence on dynamic stability of the disagreements between the Galerkin generalized fluid force

coefficients QðjÞ
msn and Q

ðj * Þ
msn ; some calculations will be made for the beam mode oscillations, i.e., for n ¼ 1: This means

that only deflections w in radial direction will be considered. As the focus point of this paper is on the fluid-dynamical

modelling, the influence of shear deformation on the tube dynamics will be ignored, although this may be of significance

in cases of short, ‘stubby’ tubes. It must also be mentioned that higher shell modes (n > 1) may be predominant in many

practical cases.

6.2.1. Theory

Writing the matrices with elements Q
ðjÞ
ms1 (or Q

ðj * Þ
ms1 ) as QðjÞ; and introducing the nondimensional parameters

%U ¼UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fluid mass per unit length

bending stiffness

s
;

b ¼
fluid mass per unit length

total mass per unit length
; ð57Þ

%o ¼ oL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
total mass per unit length

bending stiffness

s
;

the equation of motion can be written as the S  S matrix equation

½� %o2fð1� bÞIþ bQð1Þg þ i %o2 %U
ffiffiffi
b

p
Qð2Þ þ Kþ %U2Qð3Þ�c ¼ 0; ð58Þ

where the structural mass matrix I simply is the unit matrix. The stiffness matrix K ¼ diag½k41 k42 ? k4S� and the

eigenvector c ¼ fC1 C2 ? CSg
T: By introducing the matrices

A ¼ ð1� bÞIþ bQð1Þ; B ¼ 2 %U
ffiffiffi
b

p
Qð2Þ;C ¼ Kþ %U2Qð3Þ; ð59Þ

the equation system (58) can be rewritten as the 2S  2S matrix eigenvalue problem

i %o
i %oc

c

( )
¼

�A�1B �A�1C

I 0

" #
i %oc

c

( )
: ð60Þ

The stability analysis is performed by determining the complex eigenvalues l ¼ lR7ilI of the real system matrix

defined on the right-hand side of Eq. (60). Dynamic instability (flutter) is initiated when an eigenvalue with nonzero

imaginary part lI gets a positive real part (lR > 0). Static instability (divergence) is initiated when a complex eigenvalue

becomes real and positive. The instability is always of the dynamic type for the cantilevered tube (Pa.ıdoussis, 1998). The

eigenvalues are found numerically by using the QR method (Press et al., 1992). The values of the flow speed %U defining

the instability boundaries are determined using a bisection method.

6.2.2. Numerical examples

Stability curves depicting critical flow speed as function of the slenderness ratio %a are shown in Fig. 4 for (a) b ¼ 0:2;
(b) b ¼ 0:5; and (c) b ¼ 0:8: Ten modal functions (S ¼ 10) were applied in all calculations. The convergence histories

shown in Table 1 indicate that this will give results with three significant digits. However, computations with S > 10

were only done for the ME method, not for the FT method. [Two modes only (S ¼ 2) cannot give meaningful results

for b ¼ 0:8: Those results are therefore not included in the table.]

The solid curves depict the results of the ME method, while the dots are the results of the FT method. Considering

the disagreement between some of the Galerkin coefficients obtained by the two methods, the agreement between the

critical flow speed predictions appear to be surprisingly good in any case. It may be remarked that the ‘wrong’ trend of

Fig. 3. Comparison between the generalized fluid force coefficients QðjÞ
msn (49) obtained by the present method, and Q

ðj * Þ
msn (52) obtained

by the Fourier transform method: &; the added mass coefficients Q
ð1* Þ
msn ; r; the fluid damping coefficients Q

ð2* Þ
msn ; J; the fluid loading

coefficient Q
ð3* Þ
msn : The coefficients QðjÞ

msn; j ¼ 1; 2; 3; are shown with full lines. All results are for n ¼ 1: Note that the two methods give

coinciding results for a=L-0 (the ‘plug flow limit’). (a) m ¼ s ¼ 1; (b) m ¼ s ¼ 2; (c) m ¼ s ¼ 3; (d) m ¼ s ¼ 4; (e) m ¼ 1; s ¼ 2; (f)
m ¼ 1; s ¼ 3; (g) m ¼ 2; s ¼ 1; (h) m ¼ 2; s ¼ 3:
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some of the off-diagonal centrifugal force coefficients by moderate values of %a (as seen in Fig. 3(f) and (g)) seems to be

(moderately) transferred to the stability curves.

The reason why the poorly represented centrifugal force corresponding to the first modal coefficient, Q
ð3Þ
111; does not

seriously affect the critical flow speed predictions lies in the fact that the flutter mode is dominated by the higher modes

(Z2) and only weakly associated with the lowest one. This is because a fluid–structure energy balance shows that the

quantity ½@w=@x � @w=@t�x¼L; where the overbar means the time average over one period of oscillation, must be equal to

zero at the critical flow speed Ucr; and must be smaller than zero for U > Ucr (Pa.ıdoussis, 1998, p. 64). Only the second

and higher modes can ensure that ½@w=@x�x¼L has opposite sign of ½@w=@t�x¼L over most part of the vibration period. In

fact, if the eigenvalue branches2 l ¼ lðUÞ are numbered in ascending order according to the magnitude of their

imaginary parts lI at U ¼ Ucr; then, for moderate values of %a at least, the onset of flutter occurs through the ‘second

branch’ for b ¼ 0:2; through the ‘third branch’ for b ¼ 0:5; and through the ‘fourth branch’ for b ¼ 0:8: By increasing b;

Table 1

Critical flow speed %Ucr as function of the number of terms S in the Galerkin expansion

ðb ¼ 0:2; %a ¼ 0:1Þ ðb ¼ 0:2; %a ¼ 0:2Þ ðb ¼ 0:8; %a ¼ 0:1Þ ðb ¼ 0:8; %a ¼ 0:2Þ

S Modal Fourier Modal Fourier Modal Fourier Modal Fourier

2 5.3766 5.1572 5.0835 4.8348 — — — —

4 5.5894 5.3796 5.2962 5.1534 14.8631 14.5922 12.7406 12.8166

6 5.5758 5.3885 5.2836 5.1718 14.2224 13.9291 12.4262 12.7835

8 5.5728 5.4013 5.2811 5.1908 13.9094 13.4831 12.3424 12.4829

10 5.5719 5.4140 5.2803 5.2088 13.8708 13.3736 12.3279 12.3947

12 5.5716 — 5.2801 — 13.8604 — 12.3238 —

14 5.5714 — 5.2800 — 13.8567 — 12.3222 —

16 5.5714 — 5.2799 — 13.8554 — 12.3216 —

(a) (b)

(c)

Fig. 4. Nondimensional critical flow speed %Ucr; at which dynamic instability is initiated, as function of the slenderness ratio a=L: —,

the present method (49); K; the Fourier transform method (52). (a) For the mass ratio b ¼ 0:2; (b) for b ¼ 0:5; (c) for b ¼ 0:8:

2See the discussion to Eq. (60).
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more and more terms are needed in the Galerkin expansion in order to represent the critical branch properly

(Pa.ıdoussis, 1998, p. 127).

7. Concluding remarks

This paper has proposed a modal expansion of the fluid velocity potential through application of the method of

separation of variables and the Galerkin method. The validity of the approach has been checked by comparing the

results with those obtained by the Fourier transform method. A major mathematical difficulty in the discretization of

the equations of motion for a fluid-conveying shell is the coupling of fluid motion, described by a second-order

differential equation, to structural motion which is described by a differential equation of fourth order. The Fourier

transform method has clearly proved to be a powerful tool in connection with such problems. But very complex

integrals which can only be evaluated numerically is a drawback. In contrast, any generalized fluid force term of the

present method is very simple and explicit. The use of ‘higher order’ cantilever beam modal functions (which satisfy the

natural boundary conditions involving second- and third-order derivatives) to expand the solution of a second-order

differential equation is clearly a weak point. But although this affects the representation of the first mode in the

centrifugal force matrix seriously, the unstable eigenvalue branches are not significantly affected, as the critical flow

speeds predicted by the two methods agree well over a wide range of system parameters. In the light of this, it is

concluded that the present modal expansion method is a useful simple alternative to the Fourier transform method in

the analysis of dynamics and stability of cantilevered fluid-conveying shells and short beams.

It was decided from the outset to expand the potential in terms of the cantilever beam modal functions. This is a

‘good’ choice from a structural point of view. But the main results (39), (41), and (49) are applicable to any set of

orthonormal functions, provided that the corresponding coefficients bmj ; cmj ; and dmj (Eqs. (38) and (33), respectively)

are evaluated and used. As a possible means of increasing the accuracy of the results, one could, instead of the beam

modal functions, choose a set of functions with less ‘structural priority’ and higher ‘fluid priority’, such that the

eigenfunctions (28) are better approximated. This can be achieved by constructing a set of orthogonal functions where

the natural boundary conditions f 00
mðLÞ ¼ f 000

m ðLÞ ¼ 0 are relaxed (i.e., one or both are not satisfied).
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Appendix A. Expansion functions for the cantilevered tube

By using the nondimensional variable %x ¼ x=L; and again drop the �for convenience, the expansion functions (18)

can be written as

fmðxÞ ¼ coshðkmxÞ � cosðkmxÞ � smðsinhðkmxÞ � sinðkmxÞÞ

¼ 1
2
ð1� smÞekmx þ ð1þ smÞe�kmx � ð1þ ismÞeikmx � ð1� ismÞe�ikmx
 !

; ðA:1Þ

where the coefficients km are the roots of

cos k cosh kþ 1 ¼ 0: ðA:2Þ

The first six roots are, approximately,

k1 ¼ 1:87510407; k2 ¼ 4:69409113; k3 ¼ 7:85475744;

k4 ¼ 10:99554073; k5 ¼ 14:13716839;

k6 ¼ 17:27875953: ðA:3Þ

The coefficients sm are obtained from the expression
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sm ¼
sinh km � sin km

cosh km þ cos km

ðA:4Þ

which with k1; k2;y; k6 inserted gives

s1 ¼ 0:734095514; s2 ¼ 1:018467319;

s3 ¼ 0:999224497; s4 ¼ 1:000033553;

s5 ¼ 0:999998550; s6 ¼ 1:000000063: ðA:5Þ

The coefficients bmj and cmj ; defined by Eqs. (38) and (33), respectively, are given by (Pa.ıdoussis and Issid, 1974;

Pa.ıdoussis, 1998)

bmj ¼

4

ðkj=kmÞ
2 þ ð�1Þmþj

for maj;

2 for m ¼ j;

8><
>: ðA:6Þ

cmj ¼

4ðkmsm � kjsjÞ

ð�1Þmþj � ðkj=kmÞ
2

for maj;

kmsmð2� kmsmÞ for m ¼ j:

8><
>: ðA:7Þ

Appendix B. Proof of the identity
P

j bmj bjs ¼ cms

From the definition of the coefficients bms and cms given in Eqs. (38) and (33), respectively, it follows that

cms ¼
1

L

Z L

0

f 00
m fs dx ¼

1

L

Z L

0

d

dx
f 0
m

� 	
fs dx

¼
1

L

Z L

0

d

dx

XN
j¼1

bmjfj

 !
fs dx ¼

1

L

Z L

0

XN
j¼1

bmjf
0

j fs dx

¼
XN
j¼1

bmj

1

L

Z L

0

f 0
j fs dx ¼

XN
j¼1

bmj bjs: ðB:1Þ
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